On Asymptotic Generalization Error of Asymmetric Multitask Learning

نویسندگان

  • Keisuke Yamazaki
  • Samuel Kaski
چکیده

A recent variant of multi-task learning uses the other tasks to help in learning a task-of-interest, for which there is too little training data. The task can be classification, prediction, or density estimation. The problem is that only some of the data of the other tasks are relevant or representative for the task-of-interest. It has been experimentally demonstrated that a generative model works well in this relevant subtask learning task. In this paper we analyze the generalization error of the model, to show that it is smaller than in standard alternatives, and to point out connections to semi-supervised learning, multi-task learning, and active learning or covariate shift.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse coding for multitask and transfer learning

We investigate the use of sparse coding and dictionary learning in the context of multitask and transfer learning. The central assumption of our learning method is that the tasks parameters are well approximated by sparse linear combinations of the atoms of a dictionary on a high or infinite dimensional space. This assumption, together with the large quantity of available data in the multitask ...

متن کامل

Multitask Learning 43 1

Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for each task can help other tasks be learned better. This paper reviews prior work on MTL, presents new eviden...

متن کامل

Deep Asymmetric Multi-task Feature Learning

We propose Deep Asymmetric Multitask Feature Learning (Deep-AMTFL) which can learn deep representations shared across multiple tasks while effectively preventing negative transfer that may happen in the feature sharing process. Specifically, we introduce an asymmetric autoencoder term that allows predictors for the confident tasks to have high contribution to the feature learning while suppress...

متن کامل

Stochastic Complexity and Generalization Error of a Restricted Boltzmann Machine in Bayesian Estimation

In this paper, we consider the asymptotic form of the generalization error for the restricted Boltzmann machine in Bayesian estimation. It has been shown that obtaining the maximum pole of zeta functions is related to the asymptotic form of the generalization error for hierarchical learning models (Watanabe, 2001a,b). The zeta function is defined by using a Kullback function. We use two methods...

متن کامل

Optimization of the Asymptotic Property of Mutual Learning Involving an Integration Mechanism of Ensemble Learning

Abstruct– We propose an optimization method of mutual learning which converges into the identical state of optimum ensemble learning within the framework of on-line learning, and have analyzed its asymptotic property through the statistical mechanics method.The proposed model consists of two learning steps: two students independently learn from a teacher, and then the students learn from each o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008